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Abstract

Classical swine fever is a viral disease of pigs that causes severe com-

mercial restrictions to the affected areas. The knowledge of its spread

patterns and risk factors would help to implement specific measures for

controlling future outbreaks. In this article, we describe in detail a spatial

hybrid model, called Be-FAST, based on the combination of a stochas-

tic Individual Based model for between-farm spread with a Susceptible-

Infected model for within-farm spread, to simulate the spread of this dis-

ease in a given region. First, we focus on the mathematical formulation of

each component of the model. Then, in order to validate this model, we

perform various numerical numerical experiments considering the Spanish

province of Segovia. Obtained results are compared with the ones given

by other models and real outbreaks data.

keywords: Epidemiological modeling; Individual based model; Susc-

eptible-Infected model; Risk mapping; Model validation; Classical swine

fever.

1 Introduction

Modeling and simulation are important tools to fight diseases [2, 3]. Each disease
has its own characteristics and, therefore, most of them need a well-adapted
mathematical model in order to be able to tackle real-life situations [4].

In this article, we consider the Classical Swine Fever (CSF). CSF is a highly
contagious viral disease of domestic and wild pigs caused by the Classical Swine
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Fever Virus (CSFV) [28]. It generates important economical losses (as infected
pigs cannot be commercialized [41]) in the affected regions [17, 30, 35]. De-
spite the efforts to control and eradicate CSF, this disease remains endemic in
many countries of America, Africa and Asia and sporadic outbreaks have been
affecting half of the European countries from 1996 to 2007 [9, 10, 32, 33]. Due
to the different ways of CSFV spread (airborne, contact with infected animals,
etc.) [5, 10, 21, 34], it is difficult to extrapolate the routes of infection and
consequences of a CSF epidemic from one region to another. Furthermore, the
magnitude and duration of a CSF epidemic change depending on the epidemi-
ological and demographic characteristics of the infected region and the timing
and effectiveness of the applied control measures [15, 19, 38].

The study of the potential spread patterns of CSFV into a region may help
to identify risk areas to improve the prevention and management of future out-
breaks. In CSF-free areas, a good way to quantify the magnitude of potential
CSF epidemics and evaluate the efficiency of different control measures is to
use mathematical models. Recently, some models have been developed to sim-
ulate CSFV spread into CSF-free regions such as Belgium, Germany, Australia
and Netherlands [11, 15, 18, 37, 39]. Martinez et al., [27] also have described
a spatial stochastic model for Spain by using a commercial available software:
InterSpread Plus [36, 40]. However, most of those models only focus on the
between-farm spread of the CSFV, with poor assumptions regarding the within-
farm spread and do not explicitly consider the specific farm to farm contact
patterns (such as commercial network, shared vehicles, etc.) into the studied
region.

In this work, we consider a spatial hybrid model, called Be-FAST (Between-
Farm-Animal Spatial Transmission), used to simulate both within-farm and
bet-ween-farm CSFV spreads and to provide CSFV risk maps of the consid-
ered region. This model is based on the combination of a stochastic Individual
Based model [7, 15], simulating the between-farm spread, with a Susceptible-
Infected model [4, 18], simulating the within-farm spread. It has been previously
described from the veterinarian point of view (i.e., choice of the CSFV trans-
mission routes to be modeled or neglected, interpretation of the results, etc.) in
[25].

Here, after recalling in Section 2 the main characteristics of the CSF, we
give an extended description of the Be-FAST model from the mathematical
perspective (i.e., detailed equations, numerical schemes, etc.) in Section 3.
Finally, during Section 4, we focus on the model validation. More precisely, we
consider numerical experiments, based on real databases (i.e., farms description,
commercial network, etc.) of the Spanish region of Segovia provided by the
Regional Government of Castilla and Leon [12] and the Spanish Ministry of the
Environment and Rural and Marine Affairs [23]. We compare the results given
by our model with those obtained with another model, namely InterSpread
Plus, considering the same simulations. Moreover, we also take into account
the outputs generated by the model described in [16] on a different region and
real data observed during various CSF outbreaks in Spain [1] and Netherlands
[11].
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2 Classical Swine Fever characteristics

In order to help in the understanding of the Be-FAST model, described in Sec-
tion 3, we briefly explain the CSF evolution process, the routes of transmission
and present some control measures used to fight CSFV. A complete justification
of the assumptions and simplifications described in this Section, and considered
in our model, can be found in [25].

2.1 CSF evolution

CSF results from infection by CSFV, a member of the genus Pestivirus and
family Flaviviridae [28]. CSFV affects both domestic and wild pigs. When a
pig is not infected by CSFV, it is categorized in the Susceptible state (denoted
by Sp). Once it is infected, it passes successively through the following states
[30, 31]:

• Infected (denoted by Ip): The pig is infected by CSFV but cannot infect
other pigs and have no visible clinical signs (fever, lesion, etc.). The mean
duration of a pig in this state is 7 days and it is called latent period. Then,
it passes to be infectious.

• Infectious: The pig can infect other pigs but does not have clinical signs
yet. The mean duration from infectious to the development of clinical sign
is 21 days and it is called incubation period. Then, the pig has clinical
signs.

• Clinical Signs: The pig develops visible clinical signs and still infect other
pigs. After a period between two weeks and three months the pig can be
recovered or died due to the disease. The CSF death and recuperation of
pigs are assumed to be neglected, because the time period considered in
our simulation is short (≤ one year) and the slaughter of infected animals
is considered.

Those four states can be also applied at the farm level by considering that
a farm is [15]:

• Susceptible (denoted by Sf ): If all pigs in the farm are susceptible.

• Infected (denoted by If ): If at least one pig is infected.

• Infectious (denoted by Tf ): If at least one pig is infectious.

• Clinical Signs (denoted by Cf ): If at least one pig has clinical signs.

A farm either in the state If , Tf or Cf is assumed to be a contaminated farm.
Moreover, a farm in the state Tf or Cf is considered as a spreading farm.
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2.2 Routes of transmission

The main ways of CSFV spread (i.e., that a susceptible pig becomes infected)
are the following [5, 10, 21, 34]:

• By contact with an infected animal. This way of spreading is called direct
contact. By opposition, all the other routes of spreading are referred to
as indirect contacts.

• By contact with contaminated fomites such as vehicles, materials or peo-
ples (in particular, veterinarians, visitors or neighborhood farmers).

• By airborne spread.

Historically, those ways of spreading have been reported as the main routes
of CSFV spread [6], although other routes (such as movement of wild animals)
have also been described as potential ways of CSFV transmission but with a
minor impact on the CSF epidemics [10]. Thus, those alternative routes have
been neglected here.

2.3 Control measures

Once an animal becomes infected, another important concept in epidemiology
is its detection and application of control measures by the authorities [30].

When an infected pig is detected in a farm, this farm is classified as Detected.
Generally, in a zone free of CSFV (i.e., before the detection of the first contam-
inated farm, called index case), the detection occurs when pigs present clinical
signs and is due to the awareness of the own farmers or private veterinarians
[19]. When the first farm is detected, the awareness of the farmers and authori-
ties is widely increased and the detection delay decrease [15, 37]. Moreover, the
detection can be also due to the control measures presented below.

Finally, in order to control a potential CSF epidemic, some measures defined
by the European and Spanish legislation, described in [11, 12, 20, 24] and in
Section 3.6, are considered here:

• Movement restrictions: Outgoing or incoming movements in farms inside
the considered region are limited during a specified time interval (in our
case, between one and three months).

• Zoning: Zones, called control and surveillance zones, are defined around
a detected farm (considering a radius of 3km and 10km, respectively).
Surveillance activities are applied within those zones during a fixed time
period (30 and 40 days, respectively).

• Depopulation: All the animals of a detected farm are slaughtered.

• Tracing: Tracing activities involve the process of determining contacts
that have left or entered a detected farm during a time interval preceding
the detection (here, two months). The objective of tracing is to identify
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potentially infectious contacts which may have introduced CSFV into the
farm or spread CSFV to other farms.

3 Mathematical description of the model

In this Section, we describe in detail the Be-FAST model. First, we present the
general structure of our model. Then, one by one, we introduce the mathemat-
ical formulation of all the Be-FAST processes related to the input parameters,
the within-farm and the between-farm CSFV spread and the control measures.

3.1 General description

The Be-FAST model is used to evaluate the daily spread of CSFV within and
between farms into a specific region.

At the beginning of the simulation, the model parameters are set by the
user. Those referring to farms and transport of pigs are described in detail in
Section 3.2. The other ones are described in Sections 3.3-3.6 and are summarized
in Table 1. Furthermore, control measures, presented in Section 2.3, are also
implemented and can be activated/deactivated, when starting the model, in
order to quantify their effectiveness to reduce the magnitude and duration of
the CSF epidemic.

Remark 1 We note that the values of the parameters used by the model Be-
FAST should be set in function of the studied region (due to, for example, the
specific legislation, production characteristics, control measures efficiency, etc.).
For instance, the parameter values presented in this work are adapted for their
application to the province of Segovia, the region considered during the numerical
experiments presented in Section 4. In particular some parameters, referenced
by ’J.C.L’ and ’M.A.P.A., 06’ in Table 1, have been obtained by expert opinions
of the Spanish Regional Government of Castilla and Leon [12] and the Spanish
Ministry of the Environment and Rural and Marine Affairs [23].

The Be-FAST model is based on a Monte Carlo approach that generates
NS ∈ IN possible epidemic scenarios (i.e., evolution of the CSFV). More pre-
cisely, at the beginning (i.e., at time t = 0) of each scenario, denoted by (SCEm)
with m = 1, 2, ..., NS, all the farms are in the susceptible state except one ran-
domly selected farm, which is assumed to have one infectious pig and is classified
as infectious. Then, during a time interval [0, Tmax], with Tmax ∈ IN a maxi-
mum simulation day number, the within-farm and between-farm daily spread
routines, described in Sections 3.3 and 3.4, respectively, are applied. Moreover,
a daily process simulating the detection of contaminated farms by authorities
and a daily process modeling the activated control measures, presented in Sec-
tions 3.5 and 3.6, respectively, are also run. If, at the end of a simulation day,
the CSF epidemic disappears, the scenario (SCEm) is stopped and we start the
next scenario (SCEm+1).
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When the simulation is over (i.e., the scenario (SCENS
) is finished), many

kind of outputs can be generated: for instance, in Section 4.1.3, we present the
most typical ones used to analyze the performance of an epidemiological model.

A diagram summarizing all those steps is presented in Figure 1.

3.2 Farm and transport of pigs inputs

We consider a study region containing Nfr ∈ IN farms. For each farm, identified
as farm number i (also called, in order to simplify the notations, farm i), with
i = 1, ..., Nfr, the following data are given:

• (Xi, Yi) ∈ IR2: the geographical location (i.e., latitude and longitude) of
the farm centroid.

• Ni(0) ∈ IN: the number of pigs at the first day of the simulation (t = 0).

• Ti ∈ IN: the type of production of the farm. The model allows to distin-
guish three types of production: Farrowing (young pigs), Fattening (adult
pigs) or Farrow-to-Finish (mixed pigs) [18].

• INTi ∈ IN: the integrator group (i.e., groups of farms who share material
and vehicles) identifier.

• SDAi ∈ IN: the Sanitary Defense Association (SDA) group (i.e., groups
of farms who share veterinarians) identifier.

Furthermore, the following information of all farm to farm pig shipments,
occurring during a specific time interval (here, in Section 4.1.1, the year 2008),
are also provided:

• The number of pigs shipped.

• The date of the shipment.

• The farms of origin and destination of the shipment.

3.3 Within-farm CSFV spread

The daily CSFV spread within a particular contaminated farm i is modeled by
using a discrete time stochastic Susceptible-Infected (SI) model [4, 18]. The
pigs in this farm are characterized to be in one of those two states: Susceptible
or Infected, described in Section 2.1. In order to reduce the computational
complexity of our model (see Remark 2), the Infectious and Clinical Signs states
are simulated only at the farm level (more details are given in Section 3.4).
Because the time period considered is shorter than one year, the natural pig
mortality is also neglected.
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SI model

Movement restriction

Depopulation
TracingTracing
Depopulation

Movement restriction
Zoning

For scenario 1 to NS

Outputs

Inputs

For day 0 to T

Monte−Carlo algorithm

Endfor

Endfor

Within farm transmission

Zoning

Between farm transmission

Direct contacts
Vehicules transporting products
Movements of veterinarians
Local Spread

Authority detection

Control measures

CSF Spread ended?

max

Scenario is stopped

Figure 1: Diagram summarizing the Be-FAST model steps presented in Section
3.1.
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Figure 2: Evolution of the percentage of infected pigs obtained by considering
the model given by System (1) and a farm containing 1000 pigs and starting
with one infected pig, in function of the farm type: Farrowing, Fattening and
Farrow-to-Finish.

Under those assumptions, the evolution of Sp,i(t) and Ip,i(t), denoting the
number of susceptible and infected pigs in farm i at time t, respectively, is given
(in a continuous version) by















dSp,i(t)

dt
= −βi

Sp,i(t)Ip,i(t)

Sp,i(t) + Ip,i(t)
,

dIp,i(t)

dt
= βi

Sp,i(t)Ip,i(t)

Sp,i(t) + Ip,i(t)
,

(1)

where βi ∈ IR is the daily transmission parameter set to βfar =0.66, βfat =0.40
or βftf =0.53 depending of the farm type Ti: Farrowing, Fattening or Farrow-to-
Finish pig farms, respectively [18]. The evolution of the proportion of infected
pigs governed by System (1) and obtained by considering a farm containing
1000 pigs and starting with one infected pig, in function of the farm type, is
presented in Figure 2.

In order to obtain integer values of infected and susceptible pigs inside a farm
and to introduce some randomness in System (1) (the within-farm CSFV spread
may be slightly different for each farm), but respecting its general behavior, we
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have considered the following daily discrete version of System (1) [18]
{

Sp,i(t + 1) = Sp,i(t) − min(P (t), Sp,i(t)),
Ip,i(t + 1) = Ip,i(t) + min(P (t), Sp,i(t)),

(2)

where t corresponds to the day in the simulation and P (t) ∈ IN follows a Poisson

distribution with mean βi

Sp,i(t)Ip,i(t)

Sp,i(t) + Ip,i(t)
.

Remark 2 Although the SI model, presented here, seems to be too simple (with
only two pig states) to model the within CSFV spread, in practice, it gives a
good ratio between spread modeling accuracy and computational time. Indeed,
we have to consider that this model is applied to each farm infected during a
Monte-Carlo scenario, which can dramatically increase the computational time
needed by the Be-FAST model. For example, we have tried to consider the
infectious and clinical sign sates at the pig level. In that case, we obtained
results similar to ones given by the model presented here (± 2% of variation)
with a significant loss of speed performances (the computational time increases
by 30%). For the same reasons, considering a model more complex than a SI
(such as one that simulates the spatial diffusion of the CSFV inside a farm) does
not appears to be a reasonable choice in terms of model efficiency (for instance,
if an epidemiological model is used to take decisions in case of real outbreak, its
outputs should be given within a day [12]).

3.4 Between-farm CSFV spread

The CSFV spread between farms is modeled by using a spatial stochastic Indi-
vidual Based model [7, 15]. In this model, farms are classified in one of those
four states: Susceptible (Sf ), Infected (If ), Infectious (Tf ) and Clinical signs
(Cf ). Those states are described in Section 2.1.

The daily transition from a particular farm state to other state is modeled
by considering direct contacts, indirect contacts and the natural evolution of the
CSF presented in Sections 2.1 and 2.2. Those transition processes are described
in detail in Sections 3.4.1-3.4.3.

3.4.1 State transition due to direct contacts

The CSFV spread by direct contacts is assumed to occur due to the move-
ments of infected pigs between farms. Those movements are estimated by using
the data of the shipment of pigs introduced in Section 3.2. Since the trans-
ports of pigs are similar from one year to another [12, 23], we generate random
movements, respecting the database behavior (with data from previous years),
instead of using the exact ones.

More precisely, at each simulation day t, we simulate those shipments by
performing this process:

• We compute ENM(t), the estimated number of movements occurring
during the simulation day t, by considering a Poisson distribution with

9



mean NM(t), where NM(t) ∈ IN is the number of movements occurring
at day t in our database.

• Then, for each simulated movement:

• We select randomly the farm of origin of the movement i ∈ [1, ..., Nfr]
and the farm of destination of the movement j ∈ [1, ..., Nfr], with
j 6= i, by considering the discrete probability IPM , computed once
before the simulations and only each time we get a new database (we
note that other parameters related to the database may be calculated
once before running the model), defined by:

IPM ((i, j) = (k, l)) =
Mmov(k, l)

∑Nfr

m=1

∑Nfr

n=1,n6=m Mmov(m, n)
, (3)

where k ∈ [1, ..., Nfr], l ∈ [1, ..., Nfr], k 6= l and Mmov(k, l) ∈ IR is
the number of movements from farm k to l in the database plus 10−6

(to take into account, with a low probability, possible movements not
occurring in our database).

• We compute np(i,j)(t) ∈ IN, the number of pigs moved during this
movement from farm i to farm j, by considering:

np(i,j)(t) = min

{

Ceil

(

np(i,j)
Sp,i(t) + Ip,i(t)

Ni(0)

)

, Sp,i(t) + Ip,i(t)

}

,

(4)
where np(i,j) ∈ IR is the mean number of pigs moved between those
farms in our database and Ceil(x) returns the nearest integer greater
or equal to x ∈ IR. In the case of no movement from farm i to farm
j in the database, np(i,j) is set to the mean number of moved pigs,
considering all the database movements.

• Finally, we move np(i,j)(t) pigs from the origin farm i to the destina-
tion farm j. Those pigs are selected randomly in Sp,i(t) and Ip,i(t),
considering that each pig has the same probability to be selected than
the other ones. We denote by np(i,j),S(t) ∈ IN and np(i,j),I(t) ∈ IN
the number of susceptible and infected pigs that are moved during
the simulated shipment, respectively. Thus, the evolution of pigs in
farm i and j are governed by















Sp,i(t + 1) = Sp,i(t) − np(i,j),S(t),
Ip,i(t + 1) = Ip,i(t) − np(i,j),I(t),
Sp,j(t + 1) = Sp,j(t) + np(i,j),S(t),
Ip,j(t + 1) = Ip,j(t) + np(i,j),I(t).

(5)

In addition, if np(i,j),I(t) > 0, the state of farm j is set to the state
of farm i in the following cases:

· The state of farm j is Sf or
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· The state of farm j is If and the state of farm i is Tf or Cf or

· The state of farm j is Tf and the state of farm i is Cf .

In all other cases, the state of farm j remains unchanged.

3.4.2 State transition due to indirect contacts

As specified in Section 2.2, the CSFV spread due to indirect contacts is as-
sumed to occur by either movements of vehicles transporting pigs, movements
of vehicles transporting products, movements of SDA persons or the so called
’local’ spread (i.e., spread due to contacts with the neighborhood which in-
clude: airborne spread and contacts with contaminated persons and fomites in
the vicinity).

In Paragraphs A-D, we describe in detail those four kinds of indirect contacts
and the way they contribute to the CSFV spread from farm to farm. Then, in
Paragraph E, we show how this spread affects farms at the level of pig number
and state.

A- Movements of vehicles transporting pigs:
We consider the same movements as the ones generated in Section 3.4.1. If

the farm of origin of the transport is either in the state Tf or Cf , the truck
transporting pigs is considered as contaminated and, thus, can infect the farm
of destination. In that case, we assume that the probability of CSFV infection in
the farm of destination due to contact with the contaminated vehicle is modeled
by using a Bernoulli distribution with mean 0.011 [38].

B- Movements of vehicles transporting products:
Contacts with vehicles transporting products from farm to farm (also called

integrator vehicles) are assumed to occur only among the farms belonging to
the same integrator group and with the following assumptions:

• The daily number of contacts with integrator vehicles per farm is assumed
to be Poisson distributed with a mean of 0.4 [15].

• An integrator vehicle can visit a maximum of 4 farms per day [12].

• An integrator vehicle is contaminated if, previously, it has visited a spread-
ing farm (i.e., a farm either in the state Tf or Cf , see Section 2.1) [15, 38].

• The probability of CSFV infection in a farm per contact with a contami-
nated integrator vehicle is modeled by using a Bernoulli distribution with
mean 0.0068 [38].

Thus, for each simulation day, we build the routes of those integrator vehicles
and simulate the way they spread CSFV by considering the following process:

For each integrator groups INT , we perform those steps:
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– For each farm in INT , we compute the number of integrator vehicles
visiting it by using a Poisson distribution with mean 0.4.

– Then, we list the farms that are visited by integrator vehicles and we
rearrange this list, denoted by LINT , randomly (taking into account
that a same farm cannot be visited two times consecutively).

– Next, a first vehicle is sent to visit the first four farms in LINT ,
following the list order. Each fourth farm, until the end of LINT , we
consider a new integrator vehicle (non contaminated) starting from
the next farm in LINT .

– During each simulated trip, a vehicle becomes contaminated at the
moment it visits a spreading farm and can infect other farm by con-
sidering a Bernoulli distribution with mean 0.0068.

C- Movements of SDA persons:
The CSFV spread by contact with SDA persons visiting farms is assumed to

occur only between farms belonging to the same Sanitary Defense Association
(SDA) group.

The same process used in Paragraph B, to model the movements of integrator
vehicles, is applied to simulate those contacts with the following parameters:

• The daily number of SDA people contacts per farm is assumed to be
Poisson distributed with a mean of 0.3 [15].

• A SDA person can visit a maximum of 3 farms per day [12].

• A SDA person can only be contaminated if, previously, he has visited a
spreading farm [15, 38].

• The probability of CSFV infection in a farm per contact with a contami-
nated SDA person is modeled by using a Bernoulli distribution with mean
0.0065 [38].

D- Local spread:
The CSFV local spread is assumed to occur to farms in the proximity of a

farm either in the state Tf or Cf . It is mainly due to the airborne spread and
contacts with contaminated neighborhood persons and fomites.

In our case, the daily probability of CSFV infection in a farm j due to
the local spread from a spreading farm i at simulation day t is modeled by
considering a Bernoulli distribution with mean

Ip,i(t)

N(0)
LSM(d(i, j)), (6)

where N(0) =

∑

i Ni(0)

Nfr

is the mean number of pigs per farm at day 0, d(i, j)

is the distance between farms i and j and LSM(x) ∈ [0, 1] is the mean daily
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probability of CSFV infection due to local spread between two farms at a dis-
tance of x > 0 (in meter). Moreover, LSM(x) is build by interpolating the data
presented in Table 2 [15].

E- New infection and state transition:
For each new CSFV infection occurring in farm j during the processes de-

scribed in Paragraphs A to D, if Sp,j(t) ≥ 1, we infect one new pig in farm j by
considering:

{

Sp,j(t + 1) = Sp,j(t) − 1,
Ip,j(t + 1) = Ip,j(t) + 1.

(7)

Furthermore, if the state of farm j is Sf , we change it to If .

3.4.3 State transition due to CSF natural evolution

According to the characteristics of the CSF evolution described in Section 2.1,
we consider the following changes in the farm state:

• Transition from If to Tf : when a farm reach the state If , it will pass
at state Tf after a latent period that follows a Poisson distribution with
mean 7 days [15].

• Transition from Tf to Cf : when a farm reach the state Tf , it will pass
at state Cf after an incubation period that follows a Poisson distribution
with mean 21 days [15].

3.5 Contaminated farm detection

As specified in Section 2.3, a contaminated farm is generally detected by the
observation of the clinical signs of its pigs (i.e., the farm is in state Cf ) [19].
This detection is simulated differently before and after detecting of the first
contaminated farm (i.e., the index case):

• Before detecting the index case: For each farm in the state Cf , the prob-
ability of detection per day is modeled by using a Bernoulli distribution
with mean 0.03 [15].

• After detecting of the index case: As the awareness of the farmers and
private veterinarians increase, the daily probability of detection of a farm
in the state Cf is increased and is simulated by considering a Bernoulli
distribution with mean 0.06 [15].

Furthermore, a contaminated farm can be also detected due to the control
measures presented in Section 3.6.

3.6 Control measures

We now describe the control measures, introduced in Section 2.3, implemented
in our model.
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3.6.1 Movement restrictions

A drastic restriction on movements (outgoing or incoming on farms) is applied
to detected farms. Restrictions on transports of animals, integrator vehicle
movements and SDA people movements in the detected farms are assumed to
be Bernoulli distributed with a mean of 0.99, 0.95 and 0.8, respectively (i.e.,
movements are reduced by 99%, 95% and 80%, respectively). Furthermore, after
each detection, a general movement restriction, considering the three kinds of
movements, is applied to all farms during a period of 90 days and following a
Bernoulli distribution with mean 0.4 [12, 23].

Remark 3 This control measure is adapted to the Spanish province of Segovia
considered during the numerical experiments presented in Section 4. For larger
areas (such as, e.g., a country), the movement restrictions should be limited to
a part of the studied region.

3.6.2 Zoning

The farms at a distance of less than 3 km of a detected farm are set in a control
zone, whereas the farms at a distance between 3 km and 10 km of a detected
farm are set in a surveillance zone [23].

A movement restriction is applied during 30 days to farms in control zones
and 40 days to farms in surveillance zones [23]. In both cases, pig transports,
movements of SDA persons and movements of integrator vehicles are randomly
reduced by considering a Bernoulli distribution with mean 0.95, 0.9 and 0.7, re-
spectively [12]. Overlapping of the movement restrictions of control and surveil-
lance zones is allowed (i.e, if a farm has an active movement restriction, we add
the days of the new restriction to those of the old restriction).

Furthermore, we apply another surveillance process to the farms within those
zones, in addition to the one described in Section 3.5. The daily probability
detection of a farm j in the state Cf due to this surveillance is assumed to be
dependent of the proportion of infected animals and modeled by considering
[12]:

• a Bernoulli distribution with mean 0.98×
Ip,j(t)

Sp,j(t) + Ip,j(t)
if the farm j is

within a control zone,

• a Bernoulli distribution with mean 0.95×
Ip,j(t)

Sp,j(t) + Ip,j(t)
if the farm j is

within a surveillance zone and is not within a control zone.

3.6.3 Depopulation

The depopulation (i.e., the slaughter of all animals) of a detected farm i occurs
after a random time period, generated by using the data provided by Table 3
[10], starting from the day of its detection. However, the maximum number of
farms to be depopulated per day is assumed to follow a Poisson distribution
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with mean 20 [12]. Thus, if this limit is reached, the farm is depopulated the
following days. When the farm i is depopulated, its number of pigs is set to
0 and it is not considered anymore by the model. Then, after a time period
following a Poisson distribution with mean 90 days [23], the farm is repopulated
(i.e., new pigs are introduced): the number of susceptible pigs is Ni(0), the farm
state is set to Sf and the farm is again taken into account by the model.

3.6.4 Tracing

The objective of tracing is to identify infectious contacts which may have intro-
duced CSFV into a detected farm or spread CSFV to other farms. We include
the tracing of all contacts (i.e., farms sending or receiving animals, sharing SDA
persons or sharing integrator vehicles)of a detected farm occurring 60 days be-
fore the detection [23]. However, due to failures in the administrative system
(error in databases, lack of personnel, etc.) tracing all the contacts is not always
possible.

More precisely, when a farm i is detected, we list all the farms who have
shared, 60 days before the detection, at least one integrator vehicle, one SDA
person or one transport animal vehicle with farm i . Then, for each farm in
this list, we decide if it is traced or not according to following probabilities:
the probability of tracing a farm due to animal transport, integrator vehicle
movement or SDA people movement is assumed to be Bernoulli distributed
with a mean of 0.99, 0.7 and 0.4, respectively [12]. Next, for each farm to be
traced, we select the day of tracing, taking into account, as in Section 3.6.3,
that the maximum number of farms to be traced per day is assumed to follow a
Poisson distribution with mean 60. Finally, we perform a detection process to
the traced farms, the day of their tracing, by considering that the probability
of detecting a contaminated traced farm follows a Bernoulli distribution with
mean 0.95 [23].

4 Model Validation

In order to validate the Be-FAST model, we perform various numerical experi-
ments, described in Section 4.1. Those experiments are also run by considering
a commercial epidemiological model, called InterSpread Plus, briefly introduced
in Section 4.2. The results obtained by both models are compared with the
outputs generated by the Individual Based model presented in [16] considering
similar experiments; and with data observed during real CSF outbreaks occur-
ring in Spain [1] and Netherlands [11] and reported in Section 4.3. Finally, in
Section 4.4, we analyze and discuss all those results.

4.1 Numerical experiments

Now, we present the numerical experiments used for the model validation. In
particular, we detail the inputs related to farms and pig shipments, the scenarios
parameters and the considered outputs.
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Figure 3: Coordinates and boundaries of the province of Segovia (in gray). The
location of the considered pig farms is represented by black spots (•).

4.1.1 Farms and pig transports inputs

We consider the province of Segovia, one of the most important areas of pig pro-
duction in Spain, which have a surface of 6796 km2. A real database, provided
by the Spanish Regional Government of Castilla and Leon [12] and the Spanish
Ministry of the Environment and Rural and Marine Affairs [23], corresponding
to the inputs, described in Section 3.2, of the year 2008 is used.

In 2008, Nfr =1400 pig farms, containing a total of 1403800 pigs, were
located in Segovia. Those farms were divided in 11 integrator groups and 34
SDA groups. Furthermore, 208 farms were of the type Farrowing, 510 of the type
Fattening and 682 of the type Farrowing-to-Finish. Finally, during this year,
there were 10046 pig shipments. A graphical representation of the locations of
those pig farms and the province of Segovia is shown in Figure 3.

4.1.2 Scenarios parameters

We have considered two kind of simulations:

• In the first one, we do not consider any control measure, and we run
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the model during Tmax = 200 days. This case is denoted by NM (No
Measure). The interest of this experiment is to evaluate the principal
routes of CSFV spread.

• In the second one, all the control measures described in Section 3.6 are
activated and the model is running during a maximum period of three
years (Tmax = 1095), which is large enough to ensure the end of the
CSF epidemic [25]. This case is denoted by WM (With Measures). In
this experiment, which is more realistic and classical (i.e., this experiment
is considered in other works, such as [16] and [22]) than NM, we are
interested in evaluating the magnitude of the epidemic and the efficiency
of the control measures.

In both cases, we set NS = 1000 scenarios. This value gives a good compro-
mise, in the particular cases considered here for the Be-FAST model, between
the outputs stability (with variations less than 3%) and the computational com-
plexity [26]. Furthermore, we want to point out that, in the literature, some
models are run with a much lower value. For instance, in [15, 14, 16], the num-
ber of scenarios of the considered Individual Based model is 100. This reinforce
the idea of precision of the results obtained during this work.

4.1.3 Considered outputs

After each experiment (i.e., the scenario (SCENS
) is over), many kinds of out-

puts can be obtained. Here, we consider the most typical ones used to evaluate
the performances of an epidemiological model [11, 16, 27].

More precisely, for each scenario (SCEi), with i = 1, ..., NS , we compute:

• The number of infected farms.

• The duration of the epidemic: the number of days between the beginning
of the scenario and the day that all farms are in the susceptible state. If
this case never occurs in the considered scenario, the duration is Tmax.

For those both quantities, we calculate, regarding all the scenarios, their mean,
minimum and maximum values, their 95% prediction interval, their quartiles
and their discrete distribution functions.

In addition, taking into account the NS scenarios, we evaluate:

• The percentage of infections due to local spread, integrator vehicles, SDA
persons and transport of pigs (i.e., direct contacts and contaminated pig
transport trucks).

• The percentage of detection of contaminated farms, after detecting the
index case, due to observation of the clinical signs, zoning and tracing.

Furthermore, for each farm i, we compute its risk of CSFV introduction,
denoted by RI(i). It is defined as the number of times that farm i becomes
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contaminated during the whole Monte-Carlo simulation. In particular, in order
to identify the risk zones in the studied region, we are interested in obtaining
the geographical distribution of RI. Typically [29], the risk zones are classified
in three categories: high, medium and low risk. This is useful, for instance, to
design preventive control measures to fight CSFV (see Section 5 for more de-
tails). To do so, and to compare the values of RI given by the models presented
in Section 4.2, we first normalize RI(i) by considering

R̄I(i) =
R̂I(i)

maxi R̂I(i)

where R̂I(i) = RI(i)/
(

∑

i RI(i)
)

. Then, we obtain the spatial distribution of

R̄I, in Segovia, by interpolating the values of R̄I(i) considering an Inverse Dis-
tance Weighted method [42]. Finally, the identification of the three risk zones is
done by considering the Jenks Natural Breaks (JNB) classification method [13].
Those both last steps are done by using ArcGIS Ver. 9.1 (http://argis.com/).

Remark 4 We could also have considered RE(i), the effective reproduction
ratio of farm i, as the risk value, defined as the number of times that the farm i
infects another farm in the susceptible state during the complete simulation [2,
3]. Using RE(i) instead of RI(i), the results and their interpretations obtained
with this risk measure are similar to the ones obtained with RI, as showed in
[25] and [26]. Thus, they are not included in this document.

4.2 Considered models

In order to validate the BE-FAST model, we perform the experiments, presented
in Section 4.1, by using the following models:

A) A MatLab Ver. 2009.a (http://www.mathworks.com/) script implemen-
tation of the Be-FAST model. This model is denoted by BF.

B) We also consider the InterSpread Plus software Ver. 1.0.49.5 (http://www
.interspreadplus.com/). InterSpread Plus is a commercial C++ imple-
mentation of a state transition model [36, 40]. It is one of the most popular
epidemiological model software used in the world. However, in our opin-
ion, it has several drawbacks, as, for instance, the low transparency of the
code (it is a black-box program) and the difficulty to incorporate complex
databases with real movements or contacts from farm-to-farm.

We intend to reproduce the same processes as the one used by the Be-
FAST model. As it is out of the scope in this paper, we are not describing
the InterSpread Plus model in detail, we only present the main differences
between both models:

– InterSpread Plus does not allow to model the within-farm transmis-
sion (it is a purely between-farm spread model), so it is not possible
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to compute the number of infected or susceptible pigs per time period
of a particular farm. For that reason, the model coefficients cannot
be expressed in function of the number of infected or susceptible pigs.
Thus, all the coefficients depending of number of animals are set to
constant values: the daily probability of infection due to local spread
is set to LSM(x) without interpolation; the probability of infection
due to a pig shipment coming from a contaminated farm is 1; the
daily probability of detection of a contaminated farm in a control
or surveillance zone follows a Bernoulli distribution with mean 0.98
and 0.95, respectively. However, for each contaminated farm i, In-
terSpread Plus allows to associate to this farm a weight coefficient,
depending on the delay after the farm infection, that is multiplied to
all probabilities of infection due to contact with farm i. This process
intends to consider that the infectiousness of a farm increases with
the time. The weight coefficients are reported in Table 4 and fit the
SI evolution of a Farrow-To-Finish farm, depicted by Figure 2.

– The real commercial networks (i.e., pig shipments, SDA groups and
integrator groups) cannot be integrated directly in InterSpread Plus.
First, the animal transport process is simulated as follows. For each
simulation day and farm i, we have to compute the number of pig
transports sent by farm i. This is done by considering a Poisson dis-
tribution with mean MRT (i), where MRT (i) is the mean number
of daily sent pig transports of farm i. Then, for each shipment, we
select randomly a farm of destination according to the the farm dis-
tance and the probability distribution given in Table 5. The values
of MRT (i) and Table 5 are obtained from our database. Secondly,
the SDA and integrator contacts are simulated as in our model but
considering only one SDA and integrator group. The farms being vis-
ited are randomly selected in function of their distances according to
Table 5. From all those simplifications, we see that InterSpread Plus
does not allow to incorporate the real commercial contacts between
farms.

– Some other minor differences are the following: A farm infected by
a pig shipment is set to the If state; there are no limit on the daily
number of farms to be traced or depopulated.

This model is denoted by IS.

Finally, we also compare some results obtained by BF and IS models to
those given by the Individual Based model presented, in detail, in [15, 14]. This
model only simulates the between-farm spread and is applied to a fictitious Ger-
man region, but based on real statistics, in [16]. The considered region, which
has an area of 2230 km2, is composed by 2986 farms (1896 Fattening farms,
543 Farrowing farms, 546 Farrow-to-Finish farms). No data on the commercial
network between farms are considered. The simulated processes for the CSFV
spread and control measures are similar to the ones used by models BF and
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IS (except the artificial insemination spread process which has been neglected
in BF and IS due to its low proportion of infection). Furthermore, the model
parameters are adapted to the German country and can be found in [15]. How-
ever, they are close to the ones used in this work. Here, we denote this model
by KM and we only present the results available in literature [16].

4.3 Real epidemic data

In order to compare the results given by models BF and IS, we have considered
data obtained during various real CSF outbreaks. More precisely, we have
considered the information of the following three epidemics:

• Segovia (1997-98): A full description of this epidemic can be found in
[24] and we use data provided by [12]. During this event, 22 farms were
infected, all belonging to the same company and thus sharing the same
SDA and integrator groups. The epidemic duration was estimated to be
approximatively 60 days. As the affected region is Segovia, we consider
the geographical position of the infected farms to validate the risk maps
generated by BF and IS models.

• Netherlands (1997-98): This outbreak is detailed in [11]. Here, we are
interested in the proportion of infection due to each CSFV route measured
during this epidemic and reported in Table 6-(Route columns).

• Cataluña, Spain (2000-01): This case is presented in [1]. The interesting
data of this report, is the proportion of detection of each control measure
described in Table 6-(Measure columns).

4.4 Results

All the simulations, presented in this Section, are run on a computer with a
CPU Core2 Duo P8600 of 2.4Ghz, 4Gb of DDR3 memory and Windows Vista
32bit Operating System.

The outputs, described in Section 4.1.3, obtained during those experiments
are reported in Tables 6-7 and, some of them, depicted in Figures 4-5.

The computational times needed by BF and IS models to solve the NM
and WM cases are presented in Table 6-(columns C. Time). We can see
that the IS model is the faster one. In particular, for the NM scenarios (with
highest numbers of infected farms), the difference between both model is quite
high (BF is 7 times slower). In the WM case, which is a more realistic and
classical case, the difference is reasonable. This can be explained, in part, by the
fact that our model has a more complex and complete structure (for instance:
the use of SI model for each contaminated farm, dynamic coefficients, etc.)
than InterSpread Plus, and, therefore, requires more computations. Another
explanation is the difference of performances between the program language
used by BF and IS. Our model is implemented in Matlab script, an interpreted
language known to be a very slow in comparison to the compiled languages, such
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as C++ used to implement IS [8]. Matlab was chosen in order to obtain quickly
a first implementation of our model and for the easiness to process the outputs.
The computational time needed by BF model can be significantly decreased by
programming it in FORTRAN or C.

The percentage of infection in function of the CSFV routes is given in Table
6-(Route columns). We can see that both models identify the local spread as
the main source of infection. Moreover, the proportion due to SDA people is
quite similar in the two cases. The main difference between models BF and IS
is obtained when regarding the transport of animals and the integrator vehicles
proportions. In that case, IS considers the animal shipments as the second
most important cause of CSF infection instead of the integrator vehicles. This
difference is due to the fact that IS does not take into account the number
of infected pigs when performing the animal transport, whereas BF uses this
information. Thus, when the number of infected animals in the farm of origin
of the transport is low, many of the pig shipments, simulated by BF, do not
infect the destination farms, decreasing the proportion of infection due to this
route. When we compare those results with the proportion observed during the
1997-98 epidemic in Netherlands [11], we see that the BF outputs fit better
those real data (in particular regarding the INT and TA columns) than the IS
ones.

The percentage of contaminated farm detection in function of the control
measures is reported in Table 6-(Measure columns). On one hand, IS considers
that the zoning is the most efficient control measure, then the observation of
the clinical signs and, finally, the tracing. On the other hand, BF returns the
observation of clinical signs as the main detection technique, the zoning and
tracing presenting similar efficiency. This can be explained by the fact that, as
described in Section 3.6.2, BF uses the proportion of the number of infected
animals in zoned farm to generate the probability of detection due to the zoning
process (thus, the efficiency of this control measure may be reduced for farms
with a low proportion of infected animals), whereas IS does not allow this
possibility. As previously, the proportions generated with BF are closer to the
real data reported during the 2001-02 epidemic in Spain [1] than those given by
IS.

Both results, in the proportions of infection and detection, seem to indicate
that our approach, that consists in simulating the number of infected animals
in farms and use it in the formulas of the Individual Based model coefficients,
provides better results and is suitable for generating epidemiological models
presenting a realistic behavior.

The statistical values relative to the number of infected farms (NF ) and the
duration of the epidemic (DR), obtained by considering BF and IS models and
the NM and WM experiments and some of those values available for the KS
model, are reported in Table 7. The discrete distribution functions of NF and
DR are presented in Figure 4. We can observe on the table, that the IS model
generates slightly larger values of NF and DR, but of the same order, than
BF. This is an expected result when regarding the differences on the model
coefficients, in particular, the use (or not) of the proportion of infected animals
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which increases or decreases the risk of infection and detection. In fact, the
main difference can be observed on the amplitude of the extreme scenarios (i.e.,
scenarios with a high number of infected farms) which is higher for IS than BF.
This can be observed in Figure 4, where the discrete densities are quite similar
for both models except for the last proportions (NF >9 and DR >18). This
is confirmed, in the WM cases, by the fact that the minimum, PI[2.5%], Q1,
Q2 and Q3 values of both models are close and the PI[97.5%] and maximum
values are twice higher for IS than BF. In the NM experiment, since the mean
value of NF is higher (there are more extreme scenarios) the difference between
the two models is more important: Q2 and Q3 are also more than twice higher
for IS than for BF. When regarding the results produced by the KS model
in the WM case, and taking into account that the considered region has a
double number of farms and the area is smaller than Segovia, results can be
consider similar to those produced by models BF and IS. Regarding the effect
of applying or not the control measures, in both models, we observe a similar
behavior: the epidemic is reduced by ten when comparing the NM and WM
experiments.

Finally, when considering the amplitude of the 1997-98 epidemic in Segovia,
which consisted in 22 infected farms and had a duration of 60 days, it is difficult
to compare it with the BF and IS results obtained in the WM case: the DR
values are close to the real outbreak length, but the NF ones are much lower.
We have to take into account that 10 years separate the 2008 database used in
experiments and the real 1997 situation in Segovia. During this period, more
than half of the farms have disappeared, due to an economical crisis in 2006 [24],
and the control measures have been highly reinforced after the tremendous CSF
epidemic in Europe during 1997-98 (for instance, around 500 farms were infected
in Netherlands [10]). Moreover, it is possible that this epidemic represents an
extreme scenario of the model. A better way to compare those real data with
the outputs of the models considered here, is to considerate the risk maps and
see if the 1997-98 infected farms are in high risk zones.

The R̄I risk maps generated by models BF and IS, for the NM and WM
experiments, are presented in Figure 5. The Jenks Natural Breaks (JNB) clas-
sification, containing (for a better understanding of the maps) 9 intervals corre-
sponding to 9 gray colors, is also reported in this Figure: the first three intervals
[0-0.03],[0.03-0.05] and[0.05-0.07] correspond to the low risk areas; the intervals
[0.07-0.10], [0.10-0.12] and [0.12-0.15] correspond to the medium risk areas; and
the last three intervals [0.15-0.17],[0.17-0.20] and [0.20-1] correspond to the high
risk areas. This classification is obtained by considering the NM case (i.e., the
worst case) with BF model and is extended to other maps. We point out that
the JNB classifications obtained by IS are similar to the BF ones.

As we can observe on those maps, the risk distributions obtained by both
models decreases drastically from the NM cases to the WM ones. We can
also see that, although both models identify similar high risk zones in the south
west of the studied region, IS concentrates the risk in some specific regions
in the north and east parts, whereas BF identifies the center of the region as
presenting a high risk of CSFV spread. This is particularly visible on the WM
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Figure 4: Discrete distribution of (TOP) the number of infected farms NF and
(BOTTOM) the epidemic duration DR (in weeks) obtained with models BF
(dark gray) and IS (light gray) in the WM case.
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maps. Focusing on this case, we consider the farms infected during the 1997-98
epidemic in Segovia and see the risk zones where they are included. In Figure
6, we incorporate those farms to the BF and IS risk maps and we detail the
zone where most of the farms are included. We can see that, in the BF case,
most of the infected farms are situated in a dark (high risk) zone and other
farms in medium or low risk zones. In the IS case, the high risk zone does not
include those farms, and the farms are mainly located in low risk areas. The
mean R̄I value of the 1998-97 infected farms given by BF model is 0.201, which
corresponds to the highest risk in the considered JNB classification. In the IS
model, the mean risk value of those farms is 0.032, which is included in the low
risk area. This result tends to show that the maps generated by model BF are
more consistent with real data than those generated with model IS. This can
be explained by the fact that our model uses the real commercial network (i.e.,
transport of animals, SDA and integrator groups) between farms, whereas this
information is not suitably processed by IS. This shows the importance of the
use of this database to obtain a fine representation of the risk areas, and one
should use this input in an epidemiological model as soon as it is available. As
previously, we insist on the fact that 10 years separate the used databases and
the 1997-98 outbreak in Segovia, explaining why some farms could be included
in low risk zones, even in the BF map. However, this also shows the robustness
of the BF risk maps, which seem to be valid for years different from those
generating the database.

5 Conclusions

During this work, we have given an extended mathematical description of the
spatial model called Be-FAST, used for the study of CSFV spread into a region.
The principal originality of this model is that it combines a Susceptible-Infected
model, for the within-farm spread process, with an Individual Based model,
for the between-farm spread process. The proportion of infected animals given
by the Susceptible-Infected model is used to calibrate some coefficients of the
Individual Based model. Another important feature of the model, is the possi-
bility of using of a real database of the commercial network between farms. We
have seen, when comparing the results given by the model Be-FAST with those
obtained by other models (in particular, InterSpread Plus) and real outbreaks
data, that these new characteristics are very important for the quantification of
the epidemic magnitudes and the identification of the risk zones.

One of the next steps will be the implementation of the model using a faster
programming language. In addition, we will also include the economical aspects
(for instance, the prices of pigs, control measures, etc.) and will use the risk
map distribution to design CSF preventive campaigns, in order to reduce the
economical impact and the risk of possible future outbreaks. Those two last
ideas are currently in progress.
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Figure 5: Interpolated R̄I maps obtained by models (LEFT) BF and
(RIGHT) IS for the (TOP) NM and (BOTTOM) WM cases. The con-
sidered JNB classification is also reported.
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Figure 6: Interpolated R̄I maps obtained by models (LEFT) BF and
(RIGHT) IS for the WM case. We also report, with white spots (◦), the
location of the farms infected during the 1997-98 CSF epidemic in Segovia.
Furthermore, we present, in the square region, a zoom of the zone where most
of those farms are situated (except two of them).
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práctico de actuaciones contra la peste porcina clásica. available at:
http://rasve.mapa.es/Publica/InformacionGeneral/Documentos/Ma

nuales/Manual%20PPC%20enero%202011.pdf, 2006.

[24] B. Mart́ınez-Lopez. Desarrollo de modelos epidemiolgicos cuantitativos para
el análisis del riesgo de introduccin y difusin potencial de los virus de la
fiebre aftosa y de la peste porcina clásica en Espaa. PhD thesis, Universidad
Complutense de Madrid, Facultad de Veterinaria, Spain, 2009.

[25] B. Mart́ınez-Lopez, B. Ivorra, A.M. Ramos, and J.M. Sánchez-Vizcáıno.
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animal health information database. available at:
http://www.oie.int/wahid-prod/public.php?page=home, 2008.

[34] S. Ribbens, J. Dewulf, F. Koenen, H. Laevens, and A. de Kruif. Transmis-
sion of classical swine fever. a review. Vet. Q., 26:146–55, 2004.

[35] H.W. Saatkamp, P.M. Berentsen, and H.S. Horst. Economic aspects of
classical swine fever outbreaks in the european union. Vet. Microbiol.,
73(3):221–237, 2000.

[36] R. Sanson. The development of a decision support system for an animal
disease emergency. PhD thesis, Massey University, Palmerston North, New
Zealand, 1993.

[37] K.D.C. Stark. Systems for the prevention and control of infectious diseases
in pigs. PhD thesis, Massey University, Palmerston North, New Zealand,
1998.

[38] A. Stegeman, A.R.W. Elbers, A. Bouma, and M.C.M. De Jong. Rate of
inter-farm transmission of classical swine fever virus by different types of
contact during the 1997-8 epidemic in the netherlands. Epidemiol. Infect.,
128:285–291, 2002.

[39] A. Stegeman, A.R.W. Elbers, J. Smak, and M.C.M. De Jong. Quantifica-
tion of the transmission of classical swine fever virus between farms during
the 1997-1998 epidemic in the netherlands. Prev. Vet. Med., 42:219–234,
1999.

[40] M. Stern. InterSpread Plus User Guide. Institute of Veterinary, Ani-
mal, and Biomedical Sciences, Massey University, Palmerston North, New
Zealand., 2003.

[41] C. Terpstra and B. Krol. Effect of heating on the survival of swine fever
virus in pasteurised canned ham from experimentally infected animals. Ti-
jdschr Diergeneeskd, 101:1237–1241, 1976.

[42] D.F. Watson and G.M. Philip. A refinement of inverse distance weighted
interpolation. Geoprocessing, 2:315–327, 1985.

30



Parameter description Dist./Val. Ref.

Daily transmission parameter βfar/βfat/βftf 0.7/0.4/0.5 [18]
Daily PI due to local spread Table 2 [14]
PI due to vehicles transporting infected pigs BN(0.011) [39]
PI due to vehicles transporting products BN(0.0068) [39]
PI due to infectious SDA persons BN(0.0065) [39]
Daily PD of the index case BN(0.03) [14]
Daily PD due to clinical signs BN(0.06) [14]
PD due to tracing BN(0.95) [23]
Maximum Daily PD in control zone BN(0.98) [12]
Maximum Daily PD in surveillance zone BN(0.95) [12]
PR of animal movements on detected farms BN(0.99) [12]
PR of vehicle movements on detected farms BN(0.95) [12]
PR of SDA movements on detected farms BN(0.80) [12]
PR of animal movements in zoned farms BN(0.95) [12]
PR of vehicle movements in zoned farms BN(0.90) [12]
PR of SDA movements in zoned farms BN(0.70) [12]
PR of movements of non zoned farms BN(0.40) [12]
PT of animal movements BN(0.99) [12]
PT of vehicle movements BN(0.70) [12]
PT of SDA movements BN(0.40) [12]
Duration of general movement restriction 30 [23]
Duration of control and surveillance zones 30 and 40 [23]
Radius (km) of control and surveillance zones 3 and 10 [23]
Maximum number of daily traced farms PO(60) [12]
Maximum number of daily depopulated farms PO(20) [12]
Delay to repopulate a depopulated farm PO(90) [12]
Delay to depopulate farms Table 3 [10]
Tracing period 60 [23]
Latent period PO(7) [14]
Incubation period PO(21) [14]
DNC with integrator vehicles PO(0.4) [14]
Number of farms visited by an INT vehicle PO(4) [12]
DNC with SDA persons PO(0.3) [14]
Number of farms visited by SDA persons PO(3) [12]

Table 1: Summary of the parameters used by the Be-FAST model (except
those referring to farms and transport of pigs, presented in Section 3.2). From
Left to Right: short parameter description; distribution and value (Dist./Val.)
considered for the experiments reported in Section 4; and literature reference
(Ref.). We have used the following abbreviations: PI=Probability of Infection;
PD=Probability of Detection; PR=Probability of Restriction; PT=Probability
of Tracing; DNC=Daily Number of Contacts; PO(X)=Poisson distribution with
mean X; BN(X)=Bernoulli distribution with mean X.
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Table 2: Interpolation points used to compute LSM(x), the Daily probability
of CSFV infection (DPCI), in function of the farms distance x (in meter) [15].

Distance in meter 0 150 250 500 1000 2000

DPCI 0.02 0.014 0.009 0.0038 0.0019 0

ND 0 1 2 3 4 5 6 7 8

Prob. 0.11 0.58 0.2 0.06 0.04 0.004 0.003 0.0015 0.0015

Table 3: Probability distribution (Prob.) of the number of days (ND) to wait
before depopulating a detected farm [10].

Number of days 1 5 10 13 15 20 22

Weight 0.001 0.03 0.17 0.55 0.7 0.95 1

Table 4: Weight coefficient of the contaminated farms, in function of the delay
after the farm infection (in days), used in our simulations with the InterSpread
Plus model.

Distance (km) 15 30 45 60 80 120

Probability of movement 0.4 0.29 0.18 0.07 0.04 0.02

Table 5: Probability distribution of selecting a destination movement farm, in
function of the distance in km, used in our simulations with the Inter Spread
model.
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C. Time Route Measure
Model NM WM LS INT SDA TA CS ZO TR
BF 28000 4000 54 26 14 6 47 30 23
IS 14500 11000 51 13 10 26 38 50 12
REAL - - 52 25 16 7 44 28 28

Table 6: Results obtained when solving the NM and WM cases considering
models BF and IS. In C. Time columns, we report the computational times, in
seconds, needed to solve each case. In Route columns , we show the proportion
(in %) of infection due to each CSFV route obtained by considering the NM
case. The routes are: Local spread (LS ), integrator vehicles (INT ), SDA peo-
ple (SDA) and transport of animals (TA). In Measure columns, we present the
proportion (in %) of detection of contaminated farms due to each control mea-
sure obtained by considering the WM case. Control measures are: observation
of clinical signs (CS ), zoning (ZO) and tracing (TR). We also report, in line
REAL, the proportions observed during real epidemics occurring in 1997-98 in
Netherlands [11], in the Route columns, and in 2001-02 in Cataluña, Spain [1],
in the Measure columns.

MD OP Mean Min. PI[2.5%] Q1 Q2 Q3 PI[97.5%] Max.

NM

BF NF 32 1 1 4 16 40 122 339
IS NF 58 1 1 7 33 84 255 523

WM

BF NF 3.3 1 1 1 2 3 14 53
BF DR 63 14 25 38 51 80 178 428

IS NF 4.6 1 1 1 1 3 34 68
IS DR 79 14 28 38 54 81 326 729

KS NF 7.5 1 - - - - - 56
KS DR 84 20 - - - - - 230

Table 7: Number of infected farms (NF) and epidemic duration (DR) obtained
by considering the NM and WM cases and models (MD)BF and IS. For each
output (OP), we present its mean, minimum (Min.) and maximum (Max.) val-
ues, its 95% Prediction Interval lower (PI[2.5%]) and upper (PI[97.5%]) bound,
and its quartiles (Q1, Q2 and Q3).
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